$\qquad$
Unit 14 Review - Part 2: Proofs
Use the Word Bank and write the LETTER for the justification for each step.

| $\frac{m}{-5}+3=-4.5$ | Statements | Reasons |
| :---: | :---: | :---: |
|  | $\frac{m}{-5}+3=-4.5$ | 1. |
|  | $\frac{m}{-5}=-7.5$ | 2. |
|  | $m=\mathbf{3 7 . 5}$ | 3. |
| $-47=3 x-59$ | Statements | Reasons |
|  | $-47=3 x-59$ | 4. |
|  | $12=3 x$ | 5. |
|  | $4=x$ | 6. |

## WORD BANK FOR REVIEW QUESTIONS - Write the LETTER

(Letters may be used more than once)
A. Given
B. Simplify
C. Addition Property
D. Subtraction Property
E. Multiplication Property
F. Division Property
G. Substitution Property
H. Distributive Property
I. Angle Addition Postulate
J. Segment Addition Postulate
K. Definition of Midpoint
L. Definition of Congruent Segments
M. Definition of Supplementary
N. Linear Pair Theorem


| Statements | Reasons |
| :---: | :--- |
| $5 x-18=4 x$ | 7. |
| $5 x=4 x+18$ | 8. |
| $X=18$ | 9. |

WORD BANK FOR REVIEW QUESTIONS - Write the LETTER (Letters may be used more than once)
A. Given
B. Simplify
C. Addition Property
D. Subtraction Property
E. Multiplication Property
F. Division Property
G. Substitution Property
H. Distributive Property
I. Angle Addition Postulate
J. Segment Addition Postulate
K. Definition of Midpoint
L. Definition of Congruent Segments
M. Definition of Supplementary
N. Linear Pair Theorem

Fill in the blanks to complete the two-column proof.
Given: $\overline{\mathrm{TU}} \cong \overline{\mathbf{U V}}$
Prove: SU + TU = SV
Two-column proof:


| Statements | Reasons |
| :---: | :--- |
| $\overline{\mathrm{TU}} \cong \overline{\mathrm{UV}}$ | 10. |
| $\mathrm{TU}=\mathrm{UV}$ | 11. |
| $\mathrm{SU}+\mathrm{UV}=\mathrm{SV}$ | 12. |
| $\mathrm{SU}+\mathrm{TU}=\mathrm{SV}$ | 13. |

WORD BANK FOR REVIEW QUESTIONS - Write the LETTER (Letters may be used more than once)
A. Given
B. Simplify
C. Addition Property
D. Subtraction Property
E. Multiplication Property
F. Division Property
G. Substitution Property
H. Distributive Property
I. Angle Addition Postulate
J. Segment Addition Postulate
K. Definition of Midpoint
L. Definition of Congruent Segments
M. Definition of Supplementary
N. Linear Pair Theorem

Write a two-column proof for the following problem.
Given: AD bisects $\angle B A C . \angle 1 \cong \angle 3$


Prove: $\angle 2 \cong \angle 3$

| Statements | Reasons |
| :---: | :--- |
| $\overline{\mathrm{AD}}$ bisects $\angle \mathrm{BAC}$ | 14. |
| $\angle 1 \cong \angle 3$ | 15. |
| $\angle 1 \cong \angle 2$ | 16. |
| $\angle 2 \cong \angle 3$ | 17. |

WORD BANK FOR REVIEW QUESTIONS - Write the LETTER (Letters may be used more than once)
A. Given
B. Simplify
C. Addition Property
D. Subtraction Property
E. Multiplication Property
F. Division Property
G. Substitution Property
H. Distributive Property
I. Angle Addition Postulate
J. Segment Addition Postulate
K. Definition of Angle Bisector
L. Definition of Congruent Segments
M. Definition of Supplementary
N. Linear Pair Theorem

