TOPIC 7-6: PARALLEL LINES \& PROPORTIONAL PARTS IN TRIANGLES

TRIANGLE PROPORTIONALITY THEOREM: If a line is parallel to one side of a triangle and intersects the other two sides in two distinct points, then it separates these sides into segments of proportional length.

$$
\begin{array}{ll}
\frac{C B}{C A}=\frac{C D}{C A} & \frac{B A}{D E} \\
\frac{C B}{B A}=\frac{C D}{} & \frac{B A}{D E}=\frac{C A}{}
\end{array}
$$

EXAMPLE 1 Find the value of ' x '.

EXAMPLE 2 Find the value of ' x '.

EXAMPLE 3 If RT = 10, find the values of ' x ' and ' y '.

Likewise, proportional parts of a triangle can be used to prove the converse of this theorem.

THEOREM: If a line intersects two sides of a triangle and separates the sides into corresponding segments of proportional lengths, then the line is parallel to the third side.

EXAMPLE $4 \ln \triangle E F G, E G=15, E H=5$, and $L G=12, F L=6$. Determine whether HL \|EF.

EXAMPLE 5 In $\triangle A B C$, find ' x ' so that $\overline{D E} \| \overline{C B}$.
AC $=30$
$A D=10$
$A E=22$
$E B=x+4$

THEOREM: A segment whose endpoints are the midpoints of two sides of a triangle is parallel to the third side of the triangle, and its length is half the length of the third side.

EXAMPLE 6 Find the values of ' x ' and ' y '.

- - EXAMPLE 7 Find the values of ' x ' and ' y '.

