TOPIC 6-4 PROOFS WITH CPCTC (SSS, SAS, ASA, AAS, and HL)

TERM:	DEFINITION:
Congruent Triangles	Triangles in which corresponding angles and sides are congruent.

<u>Corresponding Parts of Congruent Triangles are Congruent</u> **CPCTC**

Let's look at what this means.....

By looking at this picture, we can conclude that $\triangle BOW \cong \triangle MAN$ because of ______

Because the triangles are congruent, now we can say

 $\angle B \cong$ _____; $\angle O \cong$ _____; and $\angle W \cong$ _____ because of _____.

Since the two triangles were proven congruent, we can now correctly assume that corresponding parts that we knew nothing about are now congruent.

STATEMENTS	REASONS
1.	1. Given
2. ∠3 ≅ ∠4	2.
3. ∠TRZ ≅ ∠SRZ	3.
4.	4. Reflexive Property
5. ΔTRZ ≅ Δ	5.
6.	6.

EXAMPL	E 2:

Given: \overline{AB} bisects \overline{CD} $\angle C \cong \angle D$ Prove: $\angle A \cong \angle B$

STATEMENTS	REASONS
1. AB bisects CD	1.
2.	2. Given
3.	3. Definition of Segment Bisector
4. ∠AMC ≅ ∠BMD	4.
5. ΔCMA ≅ Δ	5.
6.	6.

EXAMPLE 3

Given: M is the midpoint of \overline{AB}

$$\angle 1 \cong \angle 2, \angle 3 \cong \angle 4$$

Prove: $\overline{AC} \cong \overline{BD}$

STATEMENTS	REASONS
1. M is the midpoint of \overline{AB}	1.
2.	2. Given
3. ∠3 ≅ ∠4	3.
4.	4. Definition of Midpoint
5. ΔCAM ≅ Δ	5.
6.	6.

EXAMPLE 4

GIVEN: S is the midpoint of \overline{TV} ; $\overline{TR} \cong \overline{VR}$ PROVE: $\angle T \rtimes \angle V$

STATEMENTS	REASONS
1.	1. Given
2. $\overline{TR} \cong \overline{VR}$	2.
3. $\overline{TS} \cong \overline{SV}$	3.
4.	4. Reflexive Property
5. ΔSTR ≅ Δ	5.
6.	6.