TERM:	DEFINITION:
Congruent Triangles	Triangles in which corresponding angles and sides are congruent.

Corresponding Parts of $\underline{\text { Congruent Triangles are Congruent }}$ СРСТС

Let's look at what this means.

By looking at this picture, we can conclude that $\triangle \mathrm{BOW} \cong \triangle \mathrm{MAN}$ because of \qquad .

Because the triangles are congruent, now we can say
$\angle B \cong$ \qquad ; $\angle \mathrm{O} \cong$ \qquad ; and $\angle \mathrm{W} \cong$ \qquad because of \qquad .

Since the two triangles were proven congruent, we can now correctly assume that corresponding parts that we knew nothing about are now congruent.

Another example:

$\Delta \mathrm{BOW} \cong \triangle \mathrm{MAN}$ because of \qquad

Therefore, ___ $\cong \angle \mathrm{M}, \overline{\mathrm{BW}} \cong \ldots \ldots$ and $\ldots \overline{\mathrm{AN}}$ because of \qquad

$\triangle \mathrm{BOW} \cong \triangle \mathrm{MAN}$ by \qquad

Therefore, $\angle \mathrm{B} \cong$ \qquad $\cong \angle \mathrm{A}$, and $\overline{\mathrm{BW}} \cong$ \qquad because of \qquad

Proofs involving a Congruent Part will require you to add one additional step to the proof.

EXAMPLE 1

Given: $\overline{\mathrm{RZ}}$ bisects $\angle \mathrm{TRS}$

Prove: $\quad \angle \mathrm{S} \cong \angle \mathrm{T}$

STATEMENTS	REASONS
1.	1. Given
2. $\angle 3 \cong \angle 4$	2.
3. $\angle \mathrm{TRZ} \cong \angle \mathrm{SRZ}$	3.
4.	4. Reflexive Property
5. $\triangle \mathrm{TRZ} \cong \Delta$	5.
6.	6.

EXAMPLE 2:

Given: $\overline{\mathrm{AB}}$ bisects $\overline{\mathrm{CD}}$ $\angle C \cong \angle D$
Prove: $\angle \mathrm{A} \cong \angle \mathrm{B}$

STATEMENTS	REASONS
1. $\overline{\mathrm{AB}}$ bisects $\overline{\mathrm{CD}}$	1.
2.	2. Given
3.	3. Definition of Segment Bisector
$4 . \angle \mathrm{AMC} \cong \angle \mathrm{BMD}$	4.
5. $\triangle \mathrm{CMA} \cong \triangle$	5.
6.	6.

EXAMPLE 3

Given: M is the midpoint of $\overline{A B}$

$$
\angle 1 \cong \angle 2, \angle 3 \cong \angle 4
$$

Prove: $\overline{\mathbf{A C}} \cong \overline{\mathbf{B D}}$

STATEMENTS	REASONS
1. M is the midpoint of $\overline{\mathrm{AB}}$	1.
2.	2. Given
$3 . \angle 3 \cong \angle 4$	3.
4.	4. Definition of Midpoint
$5 . \triangle \mathrm{CAM} \cong \triangle$	5.
6.	6.

EXAMPLE 4

GIVEN: S is the midpoint of $\overline{T V}$; $\overline{\mathrm{TR}} \cong \overline{\mathrm{VR}}$
PROVE: $\overline{\angle \mathrm{Tq}} \angle \mathrm{V}$

STATEMENTS	REASONS
1.	1. Given
2. $\overline{\mathrm{TR}} \cong \overline{\mathrm{VR}}$	2.
3. $\overline{\mathrm{TS}} \cong \overline{\mathrm{SV}}$	3.
4.	4. Reflexive Property
$5 . \Delta \mathrm{STR} \cong \Delta$	5.
6.	6.

