TOPIC 6-2: USING SSS, SAS, ASA, AAS, & HL TO PROVE TRIANGLES CONGRUENT

If 2 triangles with their corresponding sides are congruent **and** their corresponding angles are congruent, then the 2 triangles are congruent.

The converse is also true. Write its converse.

But we don't have to know all three sides and all three angles ...usually **three out of the six** is enough.

You can show that two triangles are congruent, if any of the following criteria are met: **SSS, SAS, ASA, AAS, or HL.**

**REFER TO YOUR FACT SHEET!!!

- a) State the congruent parts.
- b) How are the triangles congruent?

c) State the congruence.

С

R

EXAMPLES: Mark the drawing to show the given information and fill in the blanks.

NOWPROOFS WITH TRIANGLES

- 1) Your first statement(s) are what is GIVEN or already marked on the picture.
- 2) Mark the **GIVEN** information on the picture.
- 3) Look for congruencies not in GIVEN. Any of our properties used?
 - <u>Vertical Angles:</u> Vertical angles form an "X" and the angles across from each other are \cong
 - Reflexive Property: shared lines, segments or angles mark congruent segments or angles on the diagram.
- 4) Look at what you have marked in the picture and determine how the Triangles are congruent? (SSS, SAS, ASA, AAS, or HL)
- 5) Your last statement should be the PROVE statement, and your reason should be **SSS**, **SAS**, **ASA**, **AAS**, **or HL**

EXAMPLE 7:

Given:

<u>AD</u> ≅ AB DC ≅ BC

Prove: $\triangle ADC \cong \triangle ABC$

STATEMENTS	REASONS
1.	1. Given
2.	2. Given
3. $\overline{AC} \cong \overline{AC}$	3.
4. $\triangle ADC \cong \triangle ABC$	4.

EXAMPLE 8:

Given:	C is the midpoint of
	BD; C is the midpoint of AE.

Prove: $\triangle ABC \cong \triangle EDC$

STATEMENTS	REASONS
1. C is the midpoint of \overline{BD}	1.
2.	2. Given
3. $\overline{BC} \cong \overline{DC}$	3.
4.	4. Def. of midpt.
5. ∠BCA ≅ ∠DCE	5.
6. $\triangle ABC \cong \triangle EDC$	6.

EXAMPLE 9:

Prove: $\Delta MJL \cong \Delta KLJ$

STATEMENTS	REASONS
1. JK ∥ML	1.
2.	2. Given
3. ∠MJL ≅ ∠KLJ	3.
4. ∠MLJ ≅ ∠KJL	4.
5.	5. Reflexive Property
6. ΔMJL ≅ ΔKLJ	6.