## TOPIC 6-2: USING SSS, SAS, ASA, AAS, \& HL TO PROVE TRIANGLES CONGRUENT

Important descriptions/terms to know before we begin:


1) $\overline{A B}$ is $\quad \angle C$
2) $\overline{A B}$ is $\qquad$
$\qquad$ $\angle \mathrm{A}$ and $\angle \mathrm{B}$.
3) $\angle A$ is $\qquad$ $\overline{B C}$.
4) $\angle A$ is $\qquad$ $\overline{A B}$ and $\overline{A C}$.

If 2 triangles with their corresponding sides are congruent and their corresponding angles are congruent, then the 2 triangles are congruent.

The converse is also true. Write its converse.

But we don't have to know all three sides and all three angles ... usually three out of the six is enough.

You can show that two triangles are congruent, if any of the following criteria are met: SSS, SAS, ASA, AAS, or HL.
**REFER TO YOUR FACT SHEET!!!

EXAMPLES: In each example, answer each of the following questions.
a) State the congruent parts.
b) How are the triangles congruent?
c) State the congruence.


## EXAMPLES: Mark the drawing to show the given information and fill in the blanks.

5. $E$ is the midpoint of $\overline{\mathrm{KW}} . \angle \mathrm{KEG} \cong$ $\angle \mathrm{WEH}$, and $\angle \mathrm{K} \cong \angle \mathrm{W}$.

$\Delta \mathrm{KEG} \cong \Delta$ $\qquad$ by $\qquad$ .
6. $\overline{F P} \cong \overline{H P}$ and $\angle F \cong \angle H$.

$\Delta \mathrm{PFS} \cong \Delta$ $\qquad$ by $\qquad$ .

NOW $\qquad$ ..PROOFS WITH TRIANGLES

1) Your first statement(s) are what is GIVEN or already marked on the picture.
2) Mark the GIVEN information on the picture.
3) Look for congruencies not in GIVEN. Any of our properties used?

- Vertical Angles: Vertical angles form an " $X$ " and the angles across from each other are $\cong$
- Reflexive Property: shared lines, segments or angles - mark congruent segments or angles on the diagram.

4) Look at what you have marked in the picture and determine how the Triangles are congruent? (SSS, SAS, ASA, AAS, or HL)
5) Your last statement should be the PROVE statement, and your reason should be SSS, SAS, ASA, AAS , or HL

## EXAMPLE 7:

Given:

$$
\begin{aligned}
& \overline{\mathrm{AD}} \cong \overline{\mathrm{AB}} \\
& \overline{\mathrm{DC}} \cong \overline{\mathrm{BC}}
\end{aligned}
$$

Prove: $\quad \triangle A D C \cong \triangle A B C$


| STATEMENTS | REASONS |
| :--- | :--- |
| 1. | 1. Given |
| 2. | 2. Given |
| 3. $\overline{A C} \cong \overline{A C}$ | 3. |
| 4. $\triangle \mathrm{ADC} \cong \triangle \mathrm{ABC}$ | 4. |

## EXAMPLE 8:

Given: $\quad \mathrm{C}$ is the midpoint of $\overline{\mathrm{BD}} ; \mathrm{C}$ is the midpoint of $\overline{\mathrm{AE}}$.

Prove: $\quad \triangle \mathrm{ABC} \cong \triangle E D C$


| STATEMENTS | REASONS |
| :--- | :--- |
| 1. C is the midpoint of $\overline{\mathrm{BD}}$ | 1. |
| 2. | 2. Given |
| 3. $\overline{\mathrm{BC}} \cong \overline{\mathrm{DC}}$ | 3. |
| 4. | 4. Def. of midpt. |
| 5. $\angle \mathrm{BCA} \cong \angle \mathrm{DCE}$ | 5. |
| 6. $\triangle \mathrm{ABC} \cong \triangle \mathrm{EDC}$ | 6. |

## EXAMPLE 9:

| 1. $\overline{\mathrm{JK}} \\| \overline{\mathrm{ML}}$ | Prove: $\triangle \mathrm{MJL} \cong \triangle \mathrm{KLJ}$ |
| :--- | :--- |
| 2. | 2. Given |
| 3. $\angle \mathrm{MJL} \cong \angle \mathrm{KLJ}$ | 3. |
| 4. $\angle \mathrm{MLJ} \cong \angle \mathrm{KJL}$ | 4. |
| 5. | 5. Reflexive Property |
| 6. $\triangle \mathrm{MJL} \cong \triangle \mathrm{KLJ}$ | 6. |

