TOPIC 5-5: Special Segments Continued (Watch Video)

Segment Name	Definition	RIGHT	OBTUSE	
A Angle Bisector	A segment from the vertex of the triangle - splits this vertex angle into two congruent angles.			
\mathbf{P}				

EXAMPLE 1

$\overline{\mathrm{BG}}$ is an angle bisector.
Find $\angle A B C$ if $\angle A B G=4 x+10$, and $\angle \mathrm{CBG}=6 \mathrm{x}+4$

$\mathrm{x}=$ \qquad
$\angle A B G=$ \qquad
$\angle A B C=$ \qquad

EXAMPLE 2

Given that $B G$ is a perpendicular bisector, $A G=2 x+12$, and $G C=4 x+6$, find the following:
$\angle A B G=$ \qquad

AG= \qquad
AC= \qquad

An isosceles triangle is a special case. In the picture below, $\triangle \mathrm{ABC}$ is isosceles with base $\overline{\mathrm{BC}}$. $\overline{\mathrm{AD}}$ is an angle bisector, altitude, median, and perpendicular bisector.
$\mathrm{m} \angle$ \qquad $=\mathrm{m} \angle$ \qquad
\qquad \perp \qquad
\qquad \cong \qquad

(ISOSCELES TRIANGLES: As long as a special segment is drawn from the vertex angle, it serves as the 3 other special segments as well.)

EXAMPLE 3 In isosceles $\triangle A B C$ below, $\overline{B D}$ is an angle bisector coming from the vertex $\angle B$. Find the values of ' x ', ' y ', and ' z ' if $m \angle 1=(6 x+7)^{\circ}, m \angle 2=(3 x+16)^{\circ}, m \angle 3$ $=(3 y-3)^{\circ}, A D=2 z+1$, and $D C=5 z-8$. Then find $m \angle 1$ and $A C$.

$$
\mathrm{m} \angle 1=
$$

\qquad
$A C=$ \qquad

EXAMPLE 4 Find BC.

EXAMPLE 5 Find $m \angle E F H$, given that $\mathrm{m} \angle E F G=50^{\circ}$

EXAMPLE 6 Find the measure of $T U$.

EXAMPLE $7 \quad$ Find $m \angle M K L$.

