TOPIC 5-5: Special Segments Continued (Watch Video)

Segment Name	Definition	ACUTE	RIGHT	OBTUSE
A Angle Bisector	A segment from the vertex of the triangle - splits this vertex angle into two congruent angles.			
P Perpendicular Bisector	A segment perpendicular t o a side and through the midpoint of that same side. This segment does not have to go through the vertex of the opposite side.			

EXAMPLE 1

BG is an angle bisector. Find $\angle ABC$ if $\angle ABG = 4x + 10$, and $\angle CBG = 6x + 4$

x= _____ ∠ABG= _____

∠ABC=_____

EXAMPLE 2

Given that <u>BG</u> is a perpendicular bisector, AG = 2x+12, and GC = 4x+6, find the following:

∠ABG=_____

B C

AG=_____

AC=_____

An isosceles triangle is a special case. In the picture below, $\triangle ABC$ is isosceles with base BC. <u>AD</u> is an angle bisector, altitude, median, and perpendicular bisector.

(ISOSCELES TRIANGLES: As long as a special segment is drawn from the vertex angle, it serves as the 3 other special segments as well.)

EXAMPLE 3 In isosceles $\triangle ABC$ below, \overline{BD} is an angle bisector coming from the vertex $\angle B$. Find the values of 'x', 'y', and 'z' if $m \angle 1 = (6x + 7)^\circ$, $m \angle 2 = (3x + 16)^\circ$, $m \angle 3 = (3y - 3)^\circ$, AD = 2z + 1, and DC = 5z - 8. Then find $m \angle 1$ and AC.

