TOPIC 5-2: TRIANGLE INEQUALITIES

Students are going to attempt to make triangles with different side lengths of $2 \mathrm{in}, 3 \mathrm{in}, 4 \mathrm{in}, 5 \mathrm{in}$, and 6 in . on the Smart Board.

To do this, go to website: http://www.geogebratube.org/student/m8663

Fill in the chart with the results as each student comes to the board.

| Sides | | $\begin{array}{c}\text { Classify by } \\ \text { Sides }\end{array}$ | $\begin{array}{c}\text { Sum of } \\ \text { the two } \\ \text { shorter } \\ \text { sides }\end{array}$ | $\begin{array}{c}>,<, \\ \text { or }=\end{array}$ | $\begin{array}{c}\text { Longest } \\ \text { side }\end{array}$ | $\begin{array}{c}\text { Could a } \\ \text { triangle be } \\ \text { made? }\end{array}$ |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| YES or NO | | | | | | |$]$

What pattern did you discover?

EXAMPLES: Determine if the following sides will make a triangle and if yes, then classify by sides.

1. $8,9,10$ yes or no
2. 1,1,2 yes or no
3. 6, 6, 10 yes or no
4. $3,5,7$ yes or no
5. 4, 4, 4 yes or no

In a triangle...
The longest side is opposite the largest angle.
The shortest side is opposite the smallest angle.

EXAMPLE 6: $\quad \angle \mathrm{A}=120^{\circ}, \angle \mathrm{B}=40^{\circ}, \angle \mathrm{C}=20^{\circ}$

EXAMPLE 7

Classify the triangle by sides, then list the angles from smallest to largest.

Classify: \qquad
Angles: \qquad , \quad,

EXAMPLE 8

List the sides of $\triangle A B C$ in order from longest to shortest if the angles of $\triangle A B C$ have the indicated measures: $m \angle A=(10 x)^{\circ}$, $m \angle B=(5 x-17)^{\circ}, m \angle C=(7 x-1)^{\circ}$

