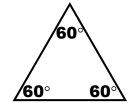
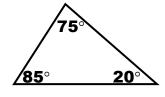
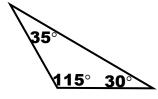
TOPIC 5-1: TRIANGLE BASICS

Welcome to Triangles! Let's open this unit with the Triangle Song!!


A triangle is made up of three compone	_
Vertices:	Q
Sides:	₽●
Angles:	
The SUM of a triangle's angles	ALWAYS equals:°
Watch this video that reviews to	riangle basics!!
One way to classify triangles is by the	length of its sides.
EXAMPLE 1 Classify each of the tri	angles by SIDES.
a) b)	c)


Triangles can also be classified by the measure of its interior angles.


(Remember: The sum of the measures of the interior angles of a triangle is **180°.**)

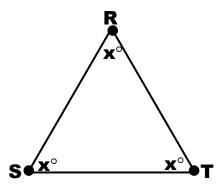

EXAMPLE 2 Classify the triangles by ANGLES.

a)_____ b)____ c)____ d)____

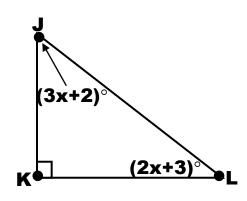
EXAMPLE 3 Find the measure of the third angle of a triangle, if the first angle has a measure of 66° and the second angle measures 37°.

EXAMPLE 4 Find the measure of each angle of $\triangle RST$.

m∠R = _____

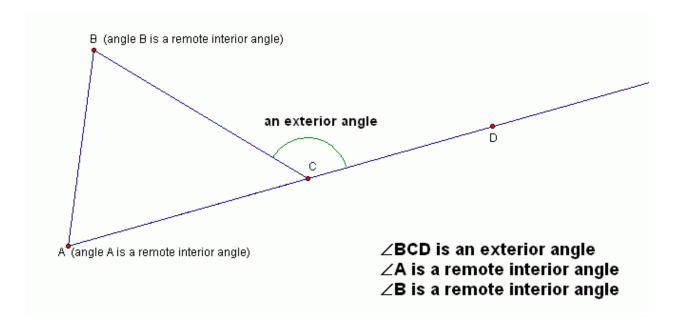

m∠S = ____

m∠T = _____

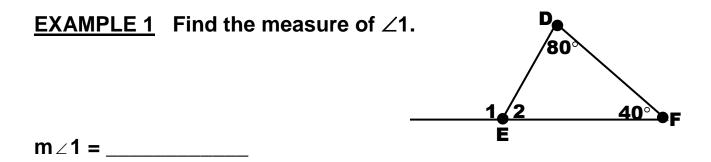

EXAMPLE 5 Find the value of 'x'.

The triangle in EXAMPLE 5 is an equiangular triangle. Based on this example, we can say that each angle of an equiangular triangle is 60°.

EXAMPLE 6 Find the m<KJL.



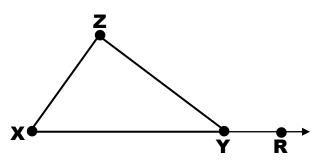
∠J and ∠L in EXAMPLE 6 would be classified as acute angles. Since their sum is 90°, we can say that...


Acute Angles of a Right Triangle are Complementary.

$$\angle J + \angle L = \underline{\qquad} \qquad x = \underline{\qquad} \qquad m \angle KJL = \underline{\qquad}$$

An *exterior angle of a triangle* is formed by one side of the triangle, and the extension of an adjacent side.

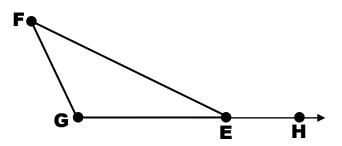
Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.



Now go to the following website link for a few interactive demonstrations:

http://www.mathwarehouse.com/geometry/triangles/angles/remote-exterior-and-interior-angles-of-a-triangle.php

EXAMPLE 2


In $\triangle XYZ$, m $\angle X = 63^{\circ}$ and m $\angle Z = 64^{\circ}$, find m $\angle ZYR$.

m∠**ZYR** = _____

EXAMPLE 3

In \triangle EFG, m \angle G = (11x – 2)°, m \angle F = (8x + 4)°, and m \angle FEH = (17x + 10)°. Find m \angle F.

m∠F = _____