TOPIC 5-1: TRIANGLE BASICS

Welcome to Triangles! Let's open this unit with the Triangle Song!!

A triangle is made up of three components:
Vertices:

Sides:

Angles:

The SUM of a triangle's angles ALWAYS equals:

Watch this video that reviews triangle basics!!

One way to classify triangles is by the length of its sides.

EXAMPLE 1 Classify each of the triangles by SIDES.
a)
b)
c) \qquad

Triangles can also be classified by the measure of its interior angles.
(Remember: The sum of the measures of the interior angles of a triangle is $\mathbf{1 8 0}^{\circ}$.)

EXAMPLE 2 Classify the triangles by ANGLES.
a) \qquad b) \qquad c) \qquad d) \qquad

EXAMPLE 3 Find the measure of the third angle of a triangle, if the first angle has a measure of 66° and the second angle measures 37°.

EXAMPLE 4 Find the measure of each angle of \triangle RST.
\qquad
$\mathrm{m} \angle \mathrm{S}=$ \qquad

$\mathrm{m} \angle \mathrm{T}=$ \qquad

EXAMPLE 5 Find the value of ' x '.

X = \qquad

The triangle in EXAMPLE 5 is an equiangular triangle.
Based on this example, we can say that each angle of an equiangular triangle is 60°.

EXAMPLE 6 Find the $\mathrm{m}<\mathrm{KJL}$.

$\mathrm{m} \angle \mathrm{KJL}=$ \qquad

$\angle J$ and $\angle L$ in EXAMPLE 6 would be classified as acute angles. Since their sum is 90°, we can say that...

Acute Angles of a Right Triangle are Complementary.

$\angle J+\angle L=$ \qquad $\mathrm{x}=$ \qquad $\mathrm{m} \angle \mathrm{KJL}=$ \qquad

An exterior angle of a triangle is formed by one side of the triangle, and the extension of an adjacent side.

Exterior Angle Theorem: The measure of an exterior angle of a triangle is equal to the sum of the measures of the two remote interior angles.

EXAMPLE 1 Find the measure of $\angle 1$.

$\mathrm{m} \angle 1=$ \qquad
Now go to the following website link for a few interactive demonstrations:
http://www.mathwarehouse.com/geometry/triangles/angles/remote-exterior-and-interior-angles-of-a-triangle.php

EXAMPLE 2

In $\triangle X Y Z, m \angle X=63^{\circ}$ and $m \angle Z=64^{\circ}$, find $m \angle Z Y R$.

$\mathbf{m} \angle \mathbf{Z Y R}=$

EXAMPLE 3

In $\triangle E F G, m \angle G=(11 x-2)^{\circ}, m \angle F=(8 x+4)^{\circ}$, and $m \angle F E H=(17 x+$ $10)^{\circ}$. Find $\mathrm{m} \angle \mathrm{F}$.

$\mathbf{m} \angle \mathbf{F}=$ \qquad

