TOPIC 2-4: Angle Addition \& Angle Bisector

ANGLE ADDITION POSTULATE:

 If \angle QPR and \angle RPS are adjacent angles, then $\mathbf{m} \angle Q P R+\mathbf{m} \angle R P S=\mathbf{m} \angle Q P S$Part + Part = Whole

PRACTICE 1

If $\mathrm{m} \angle \mathrm{PQS}=77^{\circ}$ and $\mathrm{m} \angle \mathrm{PQR}=32^{\circ}$, then find $m \angle R Q S$.

PRACTICE 2

If $m \angle A O C=70^{\circ}, m \angle A O B=(x+10)^{\circ}$, and $m \angle B O C=x^{\circ}$, find $m \angle B O C$

TERM	DEFINITION	SKETCH
Angle Bisector	A line, ray, or segment that divides an angle into 2 angles.	

PRACTICE 3

$\overrightarrow{F G}$ bisects $\angle E F H$ and $\angle I F H$ is a straight angle.
If $m \angle E F G=50^{\circ}$, find $m \angle G F H$.

What other angle measures can you find?
Use the image to the right for Practice $4 \& 5$.
$\overrightarrow{F G}$ bisects $\angle E F H$ and $\angle I F H$ is a straight angle.

PRACTICE 4
If $m \angle E F G=(5 x-10)^{\circ}$ and $m \angle G F H=(3 x+25)^{\circ}$, find $m \angle H F E$.

PRACTICE 5

If $m \angle G F H=(3 x+20)^{\circ}$ and $m \angle E F H=(4 x+80)^{\circ}$, find $m \angle E F G$.

