TOPIC 2-2: ANGLE PAIRS

Not all intersecting lines form right angles, but they do form four angles that have special relationships:

TERM	DEFINITION	PICTURE
Vertical Angles	Two non-adjacent angles formed by intersecting lines. Vertical angles are ALWAYS \qquad	$\angle 1 \& \angle 2$ are vertical angles.
Linear Pair	Adjacent angles whose noncommon sides are opposite rays. The sum of the measure of the angles in a linear pair is \qquad \circ. So a linear pair is one example of \qquad angles.	
		$\angle \mathrm{COB}$ and $\angle \mathrm{BOA}$ are a linear pair.

PRACTICE 1

$\overleftrightarrow{A C}$ and $\overrightarrow{\mathrm{DE}}$ intersect at B. Find \mathbf{x}.

Type: \qquad
$x=$ \qquad

TERM	DEFINITION	PICTURE
Adjacent Angles (always a PAIR)	Angles that have a common and no common interior points.	but

PRACTICE 2
$\overleftarrow{\mathrm{GH}}$ and $\overleftarrow{\mathrm{K}}$ intersect at I . Find the measure of $\angle \mathrm{KIH}$.

Type:
$\mathrm{m} \angle \mathrm{KIH}$: \qquad

PRACTICE 3

LM and UV intersect at B. Find the m \angle LBU. *careful*

Type:

m $\angle \mathrm{LBU}$: \qquad
$\xrightarrow{\text { PRACTICE }} 4$
$\overleftrightarrow{\mathrm{LN}}$ and $\overleftrightarrow{\mathrm{OP}}$ intersect at M . Find the measures of $\angle \mathrm{LMO}$ and $\angle \mathrm{OMN}$.

Type: \qquad
m $\angle \mathrm{LMO}$: \qquad m $\angle O M N$: \qquad

PRACTICE 5

$\overleftrightarrow{\mathrm{LN}}$ and $\overleftrightarrow{\mathrm{OP}}$ intersect at M . Find the measures of $\angle \mathrm{LMO} \& \angle O M N$.

Type: \qquad
$\mathrm{m} \angle \mathrm{LMO}$: \qquad m $\angle O M N$:

PRACTICE 6
Find all of the missing angles.
$m \angle 1=$ \qquad
$m \angle 2=$ \qquad
$m \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad

