TOPIC 2-2: ANGLE PAIRS

Not all intersecting lines form right angles, but they do form four angles that have special relationships:

TERM	DEFINITION	PICTURE
Vertical Angles	Two non-adjacent angles formed by intersecting lines. Vertical angles are ALWAYS 	21 & 22 are vertical angles.
Linear Pair	Adjacent angles whose non- common sides are opposite rays. The sum of the measure of the angles in a linear pair is°.	
	So a linear pair is one example of angles.	\angle COB and \angle BOA are a linear pair.

PRACTICE 1 AC and DE intersect at B. Find x.

Туре: _____

X = _____

TERM	DEFINITION	PICTURE
Adjacent Angles (always a PAIR)	Angles that have a common and, but no common interior points.	C P S

PRACTICE 2

 $\overrightarrow{\mathsf{GH}}$ and $\overrightarrow{\mathsf{JK}}$ intersect at I. Find the measure of $\angle \mathsf{KIH}$.

Type:	
-------	--

m∠KIH: _____

PRACTICE 3 LM and UV intersect at B. Find the m∠LBU. *careful*

Туре: _____

m∠LBU: _____

PRACTICE 4 LN and OP intersect at M. Find the measures of \angle LMO and \angle OMN.

PRACTICE 5 \overrightarrow{LN} and \overrightarrow{OP} intersect at M. Find the measures of $\angle LMO \& \angle OMN$.

Туре: _____

m∠LMO: _____ m∠OMN: _____

PRACTICE 6 Find all of the missing angles.

m∠1 = _____

m∠2 = _____

m∠3 = _____

m∠ 4 = _____

110° 45