TOPIC 17-1: INSCRIBED ANGLES

Inscribed Angle - An angle whose vertex is on the circle, and whose sides contain chords of the circle.

EXAMPLE 1: Name ALL of the inscribed angles and their corresponding intercepted arcs below.

Inscribed angles/Intercepted Arc:

THEOREM: If an angle is inscribed in a circle, then the measure of the angle is \qquad the measure of the \qquad
\qquad

Given that $m \overparen{B C}=100^{\circ}$, find the value of ' x ' in circle 0 .

THEOREM: If two inscribed angles of a circle or congruent circles intercept \qquad or the same arc, then the angles are

In circle $Q, m S T=68^{\circ}$. Find the $m \angle 1$ and $m \angle 2$.
$m \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad

THEOREM: If an inscribed angle of a circle intercepts a semicircle, then the angle is a \qquad .

Find the value of ' x '.
$\mathbf{X}=$ \qquad

THEOREM: If a quadrilateral is inscribed in a circle, then its \qquad
\qquad are supplementary.

Quadrilateral QRST is inscribed in circle C. If $m \angle T=95^{\circ}, m \angle S=100^{\circ}$, find $m \angle Q$ and $m \angle R$.
$\mathbf{m} \angle \mathrm{Q}=$ \qquad
$\mathrm{m} \angle \mathrm{R}=$ \qquad

EXAMPLE : In circle $A, m \angle 1=(6 x+11)^{\circ}, m \angle 2=(9 x+19)^{\circ}$, $m \angle 3=(4 y-25)^{\circ}, m \angle 4=(3 y-9)^{\circ}$, and $P Q \cong R S$.
Find $m \angle 1, m \angle 2, m \angle 3$, and $m \angle 4$.
$\mathrm{m} \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad
$\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$ \qquad

Practice:

Find the value of the inscribed angle.

