## TOPIC 16-4: ARC LENGTH \& AREA OF SECTORS

ARC LENGTH is a "piece" of the $\qquad$ of the circle.

Since you are finding a part of the circumference, you can set up a proportion to find the arc length:

$$
\frac{\text { arc length }}{\text { circumference }}=\frac{x^{\circ}}{360^{\circ}}
$$

EXAMPLE 1: Find the EXACT length of EP below.


EF $=$ $\qquad$
EXAMPLE 2: Find the length of LM below, rounded to the nearest thousandth.


LM $=$ $\qquad$

A SECTOR is a "slice" of the circle bounded by $\qquad$
$\qquad$ and an $\qquad$ . When finding the area of a sector, you are finding part of the area of the circle.
Since you are finding a part of the area, you can set up a proportion to find the sector:

$$
\frac{\text { sector } \text { area }}{\text { circle area }}=\frac{x^{\circ}}{360^{\circ}}
$$

EXAMPLE 3: Find the EXACT area of the sector:

Sector Area =


EXAMPLE 4: Find the area of the sector to the nearest hundredth.

Sector Area = $\qquad$


EXAMPLE 5: Find the EXACT length of $\overparen{A B}$ and area of the sector.


Length of $\overparen{A B}=$ $\qquad$
Sector Area = $\qquad$

## Arc Length and Area of a Sector

| Degree of Central <br> Angle | Arc length <br> measured with <br> yarn in cm. | wherex is the ARC LENGTH <br> $\frac{x}{d \pi}=\frac{\text { central angle }}{36}$ | wherex is the AREA OF SECTOR <br> x <br> central angle |
| :--- | :---: | :---: | :---: |
| $6 r^{2}=\frac{360}{36}$ |  |  |  |

