TOPIC 16-3: ARCS \& CHORDS

THEOREM: In a circle (or congruent circles), 2 minor arcs are congruent if and only if their corresponding chords are congruent.

Use the figure to answer the questions below.
a) Which two chords are congruent?
\qquad
b) Which two arcs are congruent?

c) What are the measures of their arcs? \qquad

If $P S=12$ and $T R=15$, then find $Q R$.

QR = \qquad

Find HI.

$\mathrm{HI}=$

THEOREM: In a circle, if a diameter (or radius) is perpendicular to a chord, then it bisects the chord and its arc.
$\overline{A D} \perp \overline{B C}, A E=12$, and the radius is 13 . Find the Following:
a) $E D=$
b) $\mathrm{AC}=$ \qquad
c) $A B=$ \qquad
d) $E B=$ \qquad
e) $\mathrm{EC}=$ \qquad
f) $\mathrm{BC}=$ \qquad

In circle $A, S Q=12$ and $A T=8$. Find $T R$.

$T R=$ \qquad

THEOREM: In a circle (or congruent circles), two chords are congruent if and only if they are equidistant from the center.

Find the values of ' x ' and ' y '.
$\mathrm{x}=$ \qquad
$\mathrm{y}=$ \qquad

In circle $O, F L=3, G O=5$, and $O P=4$. Find HJ .

HJ = \qquad

