TOPIC 16-2: ARCS, SEMICIRCLES, \& CENTRAL ANGLES

Name the following:

The central angle: \qquad
The minor arc: \qquad

The major arc:

THEOREM: SUM OF CENTRAL ANGLES

The sum of the measures of the central angles of a circle with no interior points in common is \qquad .

Arcs are measured by their corresponding central angles.
Central Angle = Arc

- $\mathrm{m} \angle \mathrm{PCM}=$ \qquad
- $m \mathrm{PM}=$ \qquad
- m PNM $=$ \qquad
- What kind of arc is PM? How do you know? \qquad

A SEMICIRLCE is an arc with a measure of \qquad . It is named by its endpoints and another point on the arc.

In circle $E, m \angle A E N=18^{\circ}, \overline{\mathrm{JN}}$ is a diameter, and $\mathrm{m} \angle \mathrm{JES}=90^{\circ}$.
Find each measure.
a) $m \widehat{A N}=$ \qquad
b) $m \overparen{J A}=$ \qquad
c) $m \overparen{J A S}=$ \qquad

Knowing: $\quad \overrightarrow{F D}$ is a tangent to circle O. Based on the angle measures given, find the measure of each of the following:
a) $\overparen{A B}=$ \qquad
b) $\overparen{A D}=$ \qquad
c) $\overparen{A C}=$ \qquad
d) $B C=$ \qquad
e) $\mathrm{ADC}=$ \qquad
f) $A C D=$ \qquad
g) $E D=$ \qquad

h) $\overparen{A E}=$ \qquad
i) $\mathrm{m} \angle \mathrm{DOF}=$ \qquad
j) $m \angle E O A=$

Find the indicated measures.
$\mathbf{x}=$ \qquad
$m \angle A E B=$ \qquad
$m \angle B E C=$ \qquad
$\mathrm{m} \angle \mathrm{CED}=$ \qquad

$\mathrm{m} \angle \mathrm{DEA}=$ \qquad

Now You Try the Next Two:

\#1: Find the measure of each arc in circle C and classify it. In the figure PZ is a diameter.
a) $\mathrm{PN}=$ \qquad ;

b) $Z Q P=$ \qquad ;
c) $\hat{R Z}=$ \qquad ;
d) $\mathrm{ZMP}=$ \qquad ;
e) $\mathrm{RM}=$ \qquad ; \qquad

f) $\mathrm{NQP}=$ \qquad ;
g) $Q N=$ \qquad ; \qquad
h) $R P=$ \qquad ; \qquad

Find the indicated measures in circle $P, \overrightarrow{Z X}$ is a tangent.
a) $\overline{\mathrm{FY}}=$ \qquad
b) $\mathrm{YX}=$ \qquad
c) $\mathrm{FD}=$ \qquad
d) $D X=$
e) $m \angle \mathrm{DPX}=$ \qquad
f) $m \angle X P Y=$ \qquad
g) $\mathrm{m} \angle \mathrm{PXZ}=$ \qquad

