TOPIC 16-1: LINES THAT INTERSECT CIRCLES

Name each of the following:

Center: \qquad
All Radii: \qquad
All Chords: \qquad
All Secants: \qquad
Diameter:

Tangent: \qquad
Point of Tangency \qquad

THEOREM: If a line is tangent to a circle, then it is PERPENDICULAR to the radius drawn to the point of tangency.

Refer to $\odot \mathbf{C}$ with tangent $A B$. Find ' x '.

THEOREM: If two segments from the same EXTERIOR point are tangent to a circle, then they are congruent.

Find the value of ' x '.

$$
\mathbf{x}=
$$

When circles are inscribed in polygons, the polygons are said to be CIRCUMSCRIBED polygons.

In such polygons, each side is TANGENT to the circle.
Δ TRW is circumscribed about $\odot A$. If the perimeter of $\Delta T R W$ is 50 , $T K=3$, and $W M=9.5$, find $T R$.

TR = \qquad

Given that $O A=12, O B=6$, and $m \angle B A C=60^{\circ}$, find the following:
a) $\mathrm{OC}=$ \qquad
b) $E D=$ \qquad
c) $A B=$ \qquad
d) $\mathrm{AC}=$ \qquad
e) $m \angle B A O=$ \qquad
f) $\mathrm{m} \angle \mathrm{OCA}=$ \qquad
g) $m \angle A O C=$ \qquad

h) $m \angle E O C=$ \qquad
i) $E A=$

In the figure below, $\overleftrightarrow{R P}$ is tangent to circle Q at R. Find the radius of circle Q.

$r=$ \qquad

Find the indicated values.
$\mathbf{X}=$ \qquad
$\mathrm{m} \angle \mathrm{ABC}=$ \qquad
BC = \qquad
Diameter of circle C = \qquad

Find the perimeter of the polygon that circumscribes the circle.

$P=$

