TOPIC 14-2 SURFACE AREA AND VOLUME OF PYRAMIDS

You can find the formulas for surface area and volume of pyramids on your STAAR formula chart

SURFACE AREA		
	Lateral	Total
Pyramid	$S = \frac{1}{2}Pl$	$S = \frac{1}{2}Pl + B$
VOLUME		
Pyramid or cone		$V = \frac{1}{3}Bh$

Before you begin each pyramid problem - find the PARTS needed.

- 1) Slant Height *l*
- 2) Perimeter of the Base (P)
- 3) Area of the Base (B)
- 4) Height of Pyramid (h)

Label the body parts in the net.

EXAMPLE 1: Find the Lateral Area, Total Area, and Volume of the square pyramid below.(Parts first!)

ℓ = B = P = h =

$$S = \frac{1}{2}Pl$$
 LA =

$$S = \frac{1}{2}Pl + B \qquad \mathbf{TA} = _$$

$$V = \frac{1}{3}Bh$$
 V =

EXAMPLE 2:

The regular triangular pyramid below has an apothem of 12 cm slant height of 20 cm and a base edge of $24\sqrt{3}$ cm. Find the Lateral Area, Total Area, and Volume.

$$S = \frac{1}{2}Pl$$
 LA =

 $S = \frac{1}{2}Pl + B \quad \mathbf{TA} = _$

 $V = \frac{1}{3}Bh$ **V** = _____

EXAMPLE 3:

The regular hexagonal pyramid below has a base edge of 6 cm, a height of 13, and a slant height of 14 cm. Find its Lateral Area, Total Area, and Volume

$$S = \frac{1}{2}Pl$$
 LA =

 $S = \frac{1}{2}Pl + B \qquad \mathbf{TA} = _$

 $V = \frac{1}{3}Bh$ **V** =