TOPIC 11-5: EFFECTS OF CHANGING DIMENSIONS ON AREA

Bellwork: Find the area of the rectangle below.

A = _____

What would happen if we changed one or both dimensions in the above rectangle?

Original Area	Change in Width	Change in Length	New Area	New Area Orig. Area
	Twice as long	Twice as long		
	Stays the same	Three times as long		
	Four times as long	Half as long		
	One-fourth as long	Twice as long		

What pattern did we see?

To find the area when changing dimensions:

<u>Original AREA</u> × <u>change</u> × <u>change</u>

EXAMPLE 1 Find the area of the isosceles triangle below, if its base were doubled and height were tripled.

A("changed" triangle) = _____

EXAMPLE 2 The area of a triangle is 36 square millimeters. Suppose the height was half as long, and the base was four times as long. What is the percent increase of the area?

A("changed" triangle) = _____

Percent increase = _

EXAMPLE 3 Find the area of the rectangle below if the width was increased by a factor of 3 and the length was increased by a factor of 4.

Х

У

A("changed" rectangle) = _____