Topic \#2: Radians

Let's recall some more things about circles:
The length of the outside of a circle is called the \qquad .

There are \qquad degrees in a circle.

Before, we have always described angles in terms of \qquad .

Now, we are going to describe angles in terms of \qquad .
\qquad
Arc Length - The distance along an ___ which is part of the of a circle.

If the ___ made by an angle in a circle is the same length as the
\qquad of that circle, the angle is measured as one radian.

In other words, radians are a \qquad of arc length and radius.

Converting Radians and Degrees:

$180^{\circ}=\pi$ radians

Conversion Formulas	
1 degree $=\quad 1$ radian $=$	

Example 1:

Convert the following angle to radians:

$$
135^{\circ}=
$$

\qquad radians

Example 2:

Convert the following angle to radians:

$$
90^{\circ}=
$$

\qquad radians

Example 3:

Convert the following angle to degrees:
$\frac{7 \pi}{6}=\ldots$ degrees

Example 4:

Convert the following angle to degrees:

Closure

In the space below, write the steps for converting an angle from degrees to radians.

