Name: \qquad Period: \qquad

Topic \#1: Equations of Circles

Let's recall what we know about circles:
The point directly in the middle of a circle is called the \qquad .
A line going from the center of a circle to the edge of a circle is called the \qquad .

The equation of a circle:
The equation of a circle with its center at the origin look like this:
r is the length of the \qquad of the circle
x represents the \qquad of a point on the circle, and y is the \qquad .

So if the circle from the bellwork has its center at the origin, its equation would be:

Example 1:

Graph the circle with equation:
$x^{2}+y^{2}=5^{2}$
What Point is the Center of this Circle? How long is the radius?

Center: \qquad
Radius: \qquad

Example 2:

Graph the circle with equation:
$x^{2}+y^{2}=49$

What Point is the Center of this Circle? How long is the radius?

Center: \qquad
Radius: \qquad

Example 3:

Write the equation for the circle graphed to the right.
What Point is the Center of this Circle? How long is the radius?

Center: \qquad
Radius: \qquad

Equation: \qquad

If a circle has a center that is not the origin, then its equation is:
\qquad
Where \qquad is the center of this circle.
r is still the length of the \qquad

Example 4:

Graph the Circle with the following Equation:

$$
(x-2)^{2}+(y-4)^{2}=36
$$

center: ___ radius:
\qquad

Example 5:

Graph the Circle with the following Equation: $x^{2}+(y+5)^{2}=1$ center: \qquad radius: \qquad

Example 6:

What is the equation for the circle on the graph?

Equation:

Closure:

In a circle equation the point (h, k) represents the \qquad of the circle, and r represents the length of the \qquad .

