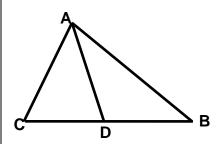
SPECIAL SEGMENTS IN TRIANGLES

Based on the markings below, tell whether \overline{AB} in each triangle is a:

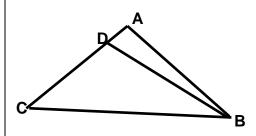
A. Altitude

B. Median

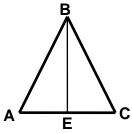
C. Neither

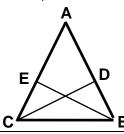

List all that apply.

List an that appry.				
1.	A B			
2.	A B			
3.	A B			
4.	A B			
5.	A B			
6.	A B			


Find the indicated values.

7	RD -		
1.	DD —	 	


 \overline{AD} is a median in $\triangle ABC$, if BD = 5x - 8, CD = 3x + 12, and AC = 7x - 14. Find the length of all three segments.


 \overline{BD} is an altitude in $\triangle ABC$, find the value of 'x' if $m\angle ADB = (6x-18)^\circ$.

Suppose \overline{BE} is an altitude and m $\angle A = 60^{\circ}$. Find m \angle ABE.

Suppose \overline{BE} and \overline{CD} are medians. If AD = 3x + 4, AE = 7x - 2 and BD = 2x + 6, then find EC.

