TRIANGLE INEQUALITIES

Is it possible for a triangle to have sides with the following lengths? If YES, classify the triangle by its sides.

1. YES or NO Classification:	Side lengths: 20, 9, 8
2. YES or NO Classification:	Side lengths: 3, 4, 5
3. YES or NO Classification:	Side lengths: 9, 12, 15
4. YES or NO Classification:	Side lengths: 6, 6, 20
5. YES or NO Classification:	Side lengths: $15,15,0.03$
6. YES or NO Classification:	Side lengths: $5,5,10.2$

Name the longest segment in each of the following triangles.
7. \qquad

8.

Name the largest angle in each of the following.

11.	

List the sides of $\triangle A B C$ in order from longest to shortest if the angles of $\triangle A B C$ have the indicated measures.

13. Sides:	$m \angle A=(5 x+2)^{\circ}, m \angle B=(6 x-10)^{\circ}$, and $m \angle C=(x+20)^{\circ}$.

14. Sides:	$m \angle A=(x+16)^{\circ}, m \angle B=(x)^{\circ}$, and $m \angle C=(x+29)^{\circ}$.

REVIEW PROBLEMS

15.	Find the missing angles.
16. $\mathrm{TL}=$ \qquad $\mathrm{LC}=$	L is between T and C. If $T L=x+7, L C=2 x-3$, and $T C=25$, find $T L$ and LC.
17.	Lines m and n are cut by a transversal so that $\angle 2$ and $\angle 5$ are corresponding angles. If $\mathrm{m} \angle 2=(x+18)^{\circ}$ and $\mathrm{m} \angle 5=(2 x-28)^{\circ}$, which value of x makes lines m and n parallel? A. $3 \frac{1}{3}$ B. $33 \frac{1}{3}$ C. 46 D. 72

18. \quad| In the figure below, line t crosses parallel lines 1 and m . Which of the |
| :--- |
| following statements are true? |
| I. $\angle 1$ and $\angle 6$ are alternate interior angles. |
| II. $\angle 2 \cong \angle 4$ |
| III. $\angle 2 \cong \angle 8$ |
| F. I only |
| G. II only |
| H. III only |
| J. I and II only |
| K. II and III only |
