

	Statements	Reasons
1.	WX = XY	1.
2.	WY = WX + XY	2.
3.	WY = XY + XY	3.
4.	WY = 2XY	4.

Rearrange the scrambled reasons and write them in the appropriate spots in the two-column proof above.

Scramble	d Reasons		
Simplify			
Given			
Substitution Property Segment Addition			
			Post

A #4-4

Given: $\overline{AB} \cong \overline{XY}$	X Y Z
$\frac{BC}{AC} \cong \frac{YZ}{YZ}$	
$\begin{array}{c} \text{Prove: } AC \cong XZ \\ \hline \\ \text{Statements} \end{array}$	Peasons
Statements	Kcasons
1. $\overline{AB} \cong \overline{XY}, \overline{BC} \cong \overline{YZ}$	1.
2. $AB = XY, BC = YZ$	2.
3. AB + BC = XY + BC	3.
4. $AB + BC = XY + YZ$	4.
5. $AB + BC = AC$	5
XY + YZ = XZ	5.
6. AC = XY + YZ	6.
7. $AC = XZ$	7.
8. $\overline{AC} \cong \overline{XZ}$	8.

Scrambled Reasons	
Definition of \cong Segments	Substitution Property (=)
Definition of \cong Segments	Segment Addition Postulate
Given	Addition Property (=)
Substitution Property (=)	Substitution Property (=)

•A

Given: $\angle 1 \cong \angle 2$

Prove: $\angle 3 \cong \angle 4$

	Statements	Reasons
1.		1.
2.	$m \angle l = m \angle 2$	2.
3.	$\angle 1 \cong \angle 3$, $\angle 2 \cong \angle 4$	3.
4.	$m \angle l = m \angle 3, m \angle 2 = m \angle 4$	4.
5.	$m \angle l = m \angle 4$	5.
6.	$m \angle 3 = m \angle 4$	6.
7.		7.

Rearrange the scrambled reasons and write them in the appropriate spots in the two-column proof above.

Scrambled Reasons

Definition of \cong Angles

Definition of \cong Angles

Definition of \cong Angles

Substitution Property (=)

Transitive Property (=)

Vertical Angles are \cong .

Given

Find each angle measure.

Identify the property that justifies each statement.

6.
$$J\overline{K} \cong K\overline{L}$$
, so $K\overline{L} \cong J\overline{K}$.

7. If m = n and n = p, then m = p.

8. a + b = a + b