NAME:
Given: $W X=X Y$
Prove: $W Y=2 X Y$

Statements	Reasons
$1 . \quad W X=X Y$	1.
2. $\quad W Y=W X+X Y$	2.
3. $W Y=X Y+X Y$	3.
4. $\quad W Y=2 X Y$	4.

Rearrange the scrambled reasons and write them in the appropriate spots in the two-column proof above.

Scrambled Reasons
Simplify
Given
Substitution Property
Segment Addition
Postulate

Given: $\begin{aligned} \overline{A B} & \cong \overline{X Y} \\ \overline{B C} & \cong \overline{Y Z}\end{aligned}$
Prove: $\overline{A C} \cong \overline{X Z}$

Statements	Reasons
1. $\quad \overline{A B} \cong \overline{X Y}, \overline{B C} \cong \overline{Y Z}$	1.
2. $\quad A B=X Y, B C=Y Z$	2.
3. $\quad A B+B C=X Y+B C$	3.
4. $\quad A B+B C=X Y+Y Z$	4.
5. $\quad A B+B C=A C$	
$\quad X Y+Y Z=X Z$	5.
6. $\quad A C=X Y+Y Z$	6.
7. $A C=X Z$	7.
8. $\overline{A C} \cong \overline{X Z}$	8.

Scrambled Reasons	
Definition of \cong Segments	Substitution Property (=)
Definition of \cong Segments	Segment Addition Postulate
Given	Addition Property (=)
Substitution Property (=)	Substitution Property (=)

Given: $\angle 1 \cong \angle 2$
Prove: $\angle 3 \cong \angle 4$

| Statements | Reasons |
| :--- | :--- | :--- |
| 1. | 1. |
| 2. $\quad m \angle 1=m \angle 2$ | 2. |
| 3. $\quad \angle 1 \cong \angle 3, \angle 2 \cong \angle 4$ | 3. |
| 4. $\quad m \angle 1=m \angle 3, m \angle 2=m \angle 4$ | 4. |
| 5. $\quad m \angle 1=m \angle 4$ | 5. |
| 6. $\quad m \angle 3=m \angle 4$ | 6. |
| 7. | 7. |

Rearrange the scrambled reasons and write them in the appropriate spots in the two-column proof above.

Scrambled Reasons

Definition of \cong Angles
Definition of \cong Angles
Definition of \cong Angles
Substitution Property (=)
Transitive Property (=)
Vertical Angles are \cong.

Given

Find each angle measure.

4. $\mathrm{m} \angle 1$

5. $\mathrm{m} \angle 2$

Identify the property that justifies each statement.
6. $\sqrt{\mathrm{K}} \cong \mathrm{KL}$, so $\overline{K L} \cong \sqrt{\mathrm{~K}}$.
7. If $m=n$ and $n=p$, then $m=p$.
8. $a+b=a+b$

