\qquad PER. \qquad

GEOMETRY SPRING SEMESTER REVIEW

PART 1. AREA \& VOLUME OF PRISMS
Draw the indicated views for the isometric drawing below.

Isometric Drawing: Left View:	3. Front View:

Draw a net that when folded would produce the indicated three-dimensional figure.

4. Triangular Prism	
5. Hexagonal Prism:	

Find the indicated measure for each of the prism described below. Write your final answer, with its corresponding units, in the blank provided.
6. $V=$ \qquad

7. $\mathrm{V}=\ldots$	Find the volume of a cube with a base edge of 3 cm.
$8 . \mathrm{TA}=\ldots$	Find the Total Area of the right triangular prism.

Find the correct answer for each of the following. Write your final answer, with corresponding units, in the blank provided.
9. $V=$ \qquad The volume of a rectangular prism is 64 cubic feet. If one dimension were reduced to one-sixteenth it original length, a second dimension were doubled, and a third dimension remained unchanged, what would be its new volume?

PART 2. AREA \& VOLUME OF PYRAMIDS
Draw a net that when folded would form the indicated three-dimensional object.

| 10. Square |
| :--- | :--- |
| Pyramid: |$|$

Find the indicated measure for each of the following pyramids. Leave answers in simplest form. Write your final answer, with its corresponding units, in the blank provided.

12. $\mathrm{LA}=\ldots$	Find the Lateral Area of the square pyramid.
$13 . \mathrm{V}=\ldots$	Find the Volume of the square pyramid from \# 12.

Find the correct answer for each of the following. Write your final answer, with corresponding units, in the blank provided.

14. $\mathrm{V}=\ldots$	The Volume of a rectangular pyramid is 192 cubic units. If its dimensions are reduced to one-fourth their original length. What is the Volume of the smaller pyramid?
15. Factor $=\ldots$	If the dimensions of a pyramid were increased to three-halves their original length, by what factor would you multiply the original area to obtain the area of the larger pyramid?

PART 3. CIRCLE BASICS

Write the term that best describes the following definitions.

16.	A segment with both endpoints on the circle.
17.	A chord that goes through the center of a circle.
18.	A line or ray that intersects a circle at two points.
19.	A line or ray that intersects a circle at exactly one point.

Find the correct answer for each of the following. Write your final answer in the blank provided. Leave your answers in simplest form.

20.	In a given circle, the radius is 48 cm. Find the measure of the circle's diameter. In a given circle, the area is 36π. radius. Find the measure of the circles'	
22.	In a given circle, the diameter is 8 cm. Find the circumference of the circle.	

25. Find the EXACT area of the shaded region

PART 1 CYLINDERS, CONES, \& SPHERES
Find the correct answer for each of the following. Leave your answers in simplest form. Write your final answer, with its corresponding units, in the blank provided.

30.	Find the Volume of the cylinder:
32.	The Lateral Area of a right circular cylinder is 60π square meters. The
height is 12 m. Find the diameter of the base.	
33.	Find the Volume of the right circular cone: Area of the right circular cone:
Find the Total Area of the sphere:	
height is 2 cm . Find the length of the radius.	

36.	Find the Volume of the sphere:
37.	The Total Area of a sphere is 144π square centimeters. Find its diameter.
38.	The Volume of a cylinder is $120 \pi \mathrm{~m}^{3}$. If it's dimensions are reduced to one-half their original length, what would its new Volume be?

PART 2. CENTRAL ANGLES, ARCS, \& SECTORS
Find the correct answer for each of the following. Write your final answer in the blank provided. Leave your answers in simplest form.
39. In the diagram the measure of $\overparen{\mathrm{ABC}=\text { ? }}$
42. If $\mathrm{AC}=13$ and $\mathrm{CD}=5$, then find AB .

Pythagorean Theorem

For each of the following, find the value of ' x ' or the length indicated.

48.	
49.	
50.	A rectangle has a diagonal of 2 cm and a length of $\sqrt{3} \mathrm{~cm}$. Find its width.
51.	Find the length of a diagonal of a square with a perimeter of 16.

$45^{\circ}-45^{\circ}-90^{\circ} \& 30^{\circ}-60^{\circ}-90^{\circ}$ Triangles
For each of the following, find the indicated lengths.

52. $\mathrm{FI}=$ \qquad $\mathrm{BI}=$	
53. $\mathrm{Cl}=$ $\mathrm{IA}=$	

54. $\mathrm{DE}=$ \qquad $E A=$ \qquad	
55. $\mathrm{Gl}=$ \qquad $\mathrm{HI}=$ \qquad	
56. $\mathrm{SW}=$ \qquad $S A=$ \qquad $\mathrm{ST}=$ \qquad $\mathrm{TA}=$ \qquad	

APPLICATIONS OF RIGHT TRIANGLES

For each of the following, find the indicated value.

57.	Sarah headed north from her house on Texas street for 20 feet. She then headed west on University Drive and went 15 feet. How far from home was she?

58.	To secure a tailgating tent, a 25-inch cord is extended from the top of a vertical pole to the ground. If the cord makes a 30° angle with the ground, how tall is the pole?
59.	If you had a 15 foot ladder, How far away from the base of a wall would you have to put it to reach a window 12 feet up?
60.	A tree broke 6 feet from the bottom. If the top of the tree landed 7 feet from the base of the tree, how tall was the tree originally? Round to the nearest thousandth.

CIRCLES \& ANGLES

Find the indicated measure for each of the following.

| $61 . \mathrm{m} \angle 1=\ldots$ | Find the $\mathrm{m} \angle 1$. |
| :---: | :---: | :---: |
| $62 . \mathrm{m} \angle 1=\ldots$ | Find the $\mathrm{m} \angle 1$. |

63. $\mathrm{x}=\mathrm{L}$
$\overleftrightarrow{A B}$ is tangent to circle $0 . \overline{\mathrm{AF}}$ is a diameter. $\mathrm{m} \overparen{A G}=100^{\circ}, m \quad C E=30^{\circ}$ and $m \quad E F=25^{\circ}$. Find each of the following.
64. $\mathrm{m} \angle 1=$ \qquad
65. $\mathrm{m} \angle 2=$ \qquad
66. $\mathrm{m} \angle 3=$ \qquad
67. $\mathrm{m} \angle 4=$ \qquad
68. $\mathrm{m} \angle 5=$ \qquad
69. $\mathrm{m} \angle 6=$ \qquad
70. $\mathrm{m} \angle 7=$ \qquad 74. $\mathrm{m} \angle 8=$ \qquad
75) Point A is located at $(4,-7)$. The point \qquad 76) What are the coordinates of point P, the image of point $(3,-4)$ after a reflection in the line $y=x$?
(A) $(3,4)$
(B) $(-3,4)$
(C) $(4,-3)$
(D) $(-4,3)$
76) What are the coordinates of the image of point $(-2,6)$ after a reflection in the y-axis?
(A) $(2,-6)$
(B) $(6,-2)$
(C) $(2,6)$
(D) $(-2,-6)$
77) What is the image of point $(-3,2)$ after a reflection in the origin?
(A) $(-2,-3)$
(B) $(3,-2)$
(C) $(-3,-2)$
(D) $(-2,3)$
